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Abstract

We assess the capabilities of different observables for the inversion of core-refracted shear waves 
(XKS phases) to uniquely resolve the anisotropic structure of the upper mantle. For this purpose, 
we perform full-waveform calculations for relatively simple, canonical models of upper-mantle 
anisotropy. The models are characterized by two and four domains of different anisotropic properties. 
Specifically, we assume hexagonal symmetry with arbitrarily chosen strength of the anisotropy 
and orientation of the horizontal fast axis. XKS waveforms, generated from plane-wave initial 
conditions, traverse through anisotropic models and are recorded at the surface by a single station 
(in case of vertical variations) and by a dense station profile across the laterally and vertically varying 
structure. In addition to waveforms, we consider the effects of anisotropic variations on apparent 
splitting parameters and splitting intensity. The results show that, generally, it is not possible to 
fully resolve the anisotropic parameters of a given model, even if complete waveforms (under noise-
free conditions and for the complete azimuthal range) are considered. This is because waveforms 
for significantly different anisotropic models can be indistinguishable. However, inversions of 
both waveforms and apparent splitting parameters lead to similar models that exhibit systematic 
variations of anisotropic parameters. These characteristics may be exploited to better constrain the 
inversions. The results also show that splitting intensity holds some significant drawbacks: First, 
even from measurements over a wide range of back-azimuth, there is no characteristic signature 
that would indicate depth variations of anisotropy. Secondly, identical azimuthal variations of 
splitting intensity for different anisotropic structures do not imply that the corresponding split 
waveforms are also similar. Thus, fitting of observed and calculated splitting intensities could lead 
to anisotropic models that are incompatible with the observed waveforms. We conclude that (band-
limited) XKS-splitting inversions and related tomographic schemes, even if based on complete 
waveforms, are not sufficient to fully resolve the heterogeneous anisotropic structures of the upper 
mantle and that combinations with alternative methods, based on e.g., receiver-function splitting, 
P-wave travel-time deviations, or surface waves, are required.
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1. Introduction

Since the early work of Vinnik et al. [1984] and Silver and Chan [1988] there has been considerable progress in 
the development of inversion approaches to infer the anisotropic properties of the upper mantle from core-refracted 
phases such as SKS, SKKS or PKS (denoted XKS in the following). The methods are based on linking the anisotropic 
material properties and their changes with surface observables including waveforms and their proxies, such as 
(apparent) splitting parameters (e.g., Silver and Savage, 1994] and splitting intensities [e.g., Chevrot, 2000]. These 
approaches are supported by increasingly dense, permanent and temporary, seismic networks that allow for a more 
precise characterization of waveform variations due to upper-mantle anisotropy [e.g., Ryberg et al., 2005; Mondal 
and Long, 2020]. However, the question arises as to what extent these inversions are able to infer the laterally and 
vertically varying anisotropic parameters of the upper mantle, and also which type of observable is best suited for 
the task.

Effects of shear-wave splitting have been conventionally described in terms of two splitting parameters: the 
polarization direction of the fast shear wave with respect to North and the accumulated delay time between the 
fast and slow shear waves [e.g., Savage, 1999; Liu and Gao, 2013]. For a single anisotropic layer, these parameters 
can be directly related to the anisotropic properties of the medium, where it is generally assumed that the fast 
polarization is indicative of the (horizontal) orientation of the a-axis of olivine crystals in the upper mantle, whereas 
the delay time scales with the strength of the anisotropy and/or the extent of the anisotropic domain. In cases of 
two or more anisotropic layers the two splitting parameters exhibit a characteristic 90°-periodicity as function of 
initial polarization (back-azimuth) and are only “apparent” in the sense that the obtained values are not directly 
representative of the anisotropic parameters in the layers [e.g., Silver and Savage, 1994; Rümpker and Silver, 1998; 
Levin et al., 1999]. It is well known that the apparent splitting parameters are non-unique and may show similar 
variations as functions of back-azimuths even for significantly different anisotropic layering [e.g., Park and Levin, 
2002; Abt and Fischer 2008; Latifi et al., 2018].

Splitting intensity is a single parameter that is representative of the relative energy of the XKS-phase on the 
transverse component of the seismogram (for a given back-azimuth). It was first utilized by Chevrot [2000] in a 
multi-channel analysis to derive the two splitting parameters of a single anisotropic layer from its variation as 
function of back-azimuth. The splitting intensity further provides a measure to relate the sensitivity of the split 
waveforms to anisotropic structures in the mantle [e.g., Favier and Chevrot, 2003]. It has also been used in studies 
of shear-wave splitting tomography [e.g., Long et al. 2008; Sieminski et al., 2008; Chevrot and Monteiller, 2009; 
Mondal and Long, 2020].

Generally, “full” waveforms provide the most complete information about the anisotropic properties encountered 
by the wavefield along its way to the receiving station [e.g., Menke and Levin, 2003]. However, the limitations of 
waveform(-based) inversions of XKS splitting to infer complex anisotropic structures in the mantle have not been 
investigated in detail. While finite-frequency effects are considered by the tomographic schemes that relate splitting 
intensity and splitting sensitivity to anisotropic variations in the mantle, their resolving power is certainly limited. 
For example, Chevrot [2006] showed that vectorial tomography based on splitting intensity is able to resolve 
fast-axis variations if the strength of anisotropy is assumed to be known a priori. More recently, Mondal and Long 
[2019], concluded that their tomographic approach is robust when constraining one of the parameters (strength of 
anisotropy or symmetry axis) and by conducting the inversion for anomalies of the other quantity.

To assess the suitability of the different observables and their effects on shear-wave splitting inversions, the 
finite-frequency nature of XKS waveforms must be considered. A more direct approach to examine the resolving 
power of XKS splitting observations is to consider the full wavefield generated for different anisotropic models. 
Previous full-waveform forward modeling and observations showed that vertical and lateral variations of anisotropy 
can leave a complex and non-unique signature on the XKS wavefield traversing the upper mantle [e.g., Rümpker et al., 
2003; Zhao et al., 2008; Kaviani et al., 2011; Wölbern et al., 2014; Reiss et al., 2018]. Which observables are best 
suited to unravel the waveform modifications is subject to the investigations presented in this study. We employ a 
“brute-force” inversion approach by sampling the complete model space and by directly comparing full waveforms 
and waveform proxies. To this end, we consider different canonical models of anisotropic structure in the upper 
mantle and focus on accessing the suitability of apparent splitting parameters, splitting intensity, and full waveforms 
for the inversions to infer the underlying model parameters.
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2. Forward-modeling of XKS splitting

2.1 Vertically varying anisotropic medium

Here, we first assume a single anisotropic layer with a horizontal symmetry axis (oriented at an angle 𝜑, with 
respect to North, Figure 1a) where a vertically incident shear wave is split into fast and slow components, polarized 
horizontally, perpendicular to each other. Generally, the two quasi-shear waves travel at different speeds such that 
they become separated by the delay time, 𝛿𝑡, over the thickness of the layer. For teleseismic phases in a radially 
symmetric Earth, the polarization of the incident wave, , (unit vector) is given by the back-azimuth, 𝛽, measured 
with respect to North and defined by the azimuth of the earthquake with respect to the receiving station (see 
Figure 1a).

a) b)

Figure 1. �(a) Relationships between coordinates and angles used to describe the shear-wave splitting. The initial polar-
ization  points towards the source.  and  denote geographic North and East directions.  and  correspond 
to the fast and slow axes in the anisotropic layer. For the radial and transverse directions,  and , respectively, 
we follow the seismological conventions (e.g., Gubbins, 1990). Angles 𝛽 and 𝜑 denote back-azimuth and fast 
axis with respect to North. (b) Schematic view of the 1-dimensional 2-layer reference model with anisotropic 
parameters of the lower and upper layers (fast axes with respect to North and delay times between the fast and 
the slow shear-waves). The inverted triangle denotes the seismic station. Note, that for long-period XKS phases, 
as considered in this study, individual split shear waves are not fully separated.

Mathematically, the effect can be described by the following system of equations. Similar formulations have 
been presented before [e.g., Silver and Savage, 1994; Rümpker and Silver, 1998; Montagner et al., 2000; Romanowicz 
and Yuan, 2012]. Here we use a modified self-consistent formulation that can be easily adopted and generalized to 
multi-layered media. We consider a vertically propagating, horizontally polarized shear wave incident from below. 
With the waveform in the frequency domain, , the displacement can be given as

	 .� (1)
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In view of Figure 1a, the initial polarization may be expressed in terms of its geographic (east, north) components

	 .� (2)

Thus, we may write

	 ,� (3)

where the geographic components of the displacement are given by

	 ,

	 .�
(4)

Upon entering the anisotropic layer, the displacement is split into a fast and a slow component. The correspond-
ing unit vectors are given by (see Figure 1a)

	 � (5)

or, in terms of the displacement

	 ,� (6)

where 𝜑 corresponds to horizontal symmetry axis (or fast axis) in the layer. After passing through the anisotropic 
layer, fast and slow waves are offset from each other by the delay time, 𝛿𝑡. The offset may be distributed symmet-
rically, which leads to the displacement components (in fast-slow coordinates)

	 .� (7)

In view of eq. (5), the corresponding displacement in geographic coordinates is given by

	 .� (8)

To summarize, we express the shear-wave displacement at the top of the anisotropic layer as

	 � (9)

or

	 ,� (10)
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where 𝑭 and 𝑫 are matrices defined by the splitting parameters 𝜑 (i.e., the fast-polarization direction or fast axis) 
and 𝛿𝑡 (delay time), respectively, of the anisotropic layer, and the product matrix 𝑺 represents the corresponding 
splitting operator.

The generalization of eq. (10) to account for the effects of a second anisotropic layer, is straightforward

	 ,� (11)

where the indices 1 and 2 refer to the anisotropic parameters of the first and second anisotropic layer, respectively. 
Further details and the generalization to multiple anisotropic layers are discussed in, e.g., Silver and Savage [1994] 
and Rümpker and Silver [1998].

Shear-wave splitting may also be calculated directly in the time domain. In this case the diagonal matrix 𝑫 
can be replaced by a time-shift operator that accounts for the advance and delay of the time-domain waveform 
components expressed in fast-slow coordinates. However, the generalization to multiple layers is more cumbersome 
as the multiplication (as applied in eq. 11) of the time-domain operators is not defined and the operations can only 
be performed successively.

One may note that the formalism described above is “complete” in the sense that there is no approximation 
with respect to the frequency content of the vertically propagating wavefield in a laterally homogenous medium. 
For multiple anisotropic layers, effects of internal reverberations are not considered. However, this limitation is 
not significant if the overall (isotropic background) velocity remains near constant as it is the case within the upper 
mantle. Effects of lateral variations of material properties are considered in the next section.

2.2 Laterally and vertically varying medium

The wave equation for anisotropic elastic media has not been discussed explicitly in the previous section, it 
nevertheless forms the basis for the derivation of the presented equations. It may be written as [Aki and Richards, 
1980]

	 � (12)

with displacement 𝑢𝑖, stress tensor 𝜎𝑖𝑗, and density 𝜌. The comma denotes the partial derivative and indices 𝑖, 𝑗 
range from 1 to 3, and the summation convention applies. In the following, we consider 2-dimensional variations of 
elastic parameters (in the 𝑥1,𝑥3-plane, where 𝑥3 points vertically downwards and 𝑥1 along the direction of material 
changes) and further assume that all derivatives of the material properties as well as of the displacement field with 
respect to 𝑥2 vanish (i.e. 𝜕2 = 0).

The full wave equation for the three displacement components can then be written in the form [Ryberg et al., 
2002; Zhao et al., 2008]

	 ,
	 ,� (13)
	 ,

where we introduce the crystallographic notation by replacing the indices as follows, 

	 ,  ,  ,  ,  ,  .� (14)

The 6 components of the stress tensor, 𝜎𝐼, are then given by

	 .� (15)
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The elastic constants, 𝑐𝐼𝐽, may be given in matrix form

	 ,� (16)

where we assume an elastic tensor of orthorhombic symmetry with, at this point, symmetry axes (a,b,c) oriented 
parallel to the coordinate axes. The matrix is symmetric and elements 𝑐2𝐽 do not contribute because of the reduced 
dimensionality. Rotations of the 4th order elastic tensor can be performed by the transformation

	 .� (17)

We now assume the a and c axes in the horizontal 𝑥1,𝑥2-plane and only account for rotations of the elastic tensor 
with respect to the vertical 𝑥3 axis, such that the rotation matrix, 𝛾𝑖𝑗, can be given by

	 � (18)

with rotation angle 𝛾. In view of this, the application of eq. (17) yields an elastic tensor with a general orientation 
of the orthogonal a-c axes in the horizontal plane, such that its matrix representation takes the form

	 .� (19)

The elastic constants of the vertically and laterally varying model are more specifically defined in appendix A2.
The displacement components are obtained by solving the wave equation (eq. 13) numerically using a finite 

difference method. The corresponding synthetic seismograms are complete in the sense that they include finite-
frequency effects, scattering and diffractions due to material inhomogeneities, and conversions between wave 
types. As indicated in the formulation given above, the numerical simulations are performed with respect to a 2D 
cartesian coordinate system. Changes in material properties and wavefield variations are restricted to the 𝑥1 – 𝑥3 
plane. For the numerical evaluation, we adopted the explicit second-order isotropic finite-difference formulation 
of Kelly et al. [1976] and generalized it to the anisotropic case. Free-surface conditions are specified at the upper 
boundary of the computational domain. Numerical grid dispersion is limited by choosing sufficiently small step 
sizes in space and time. The computational domain is chosen large enough to suppress any influence of spurious 
reflections originating from the grid boundaries. Effects of wavefront curvature are not considered.

2.3 Splitting parameters and splitting intensity

To access the suitability of different observables for anisotropic inversion schemes we analyze the effects of 
seismic anisotropy not only by waveforms, as calculated by the schemes described above, but also in terms of 
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splitting parameters [e.g., Silver and Savage, 1994] and splitting intensity [Chevrot, 2000]. We will investigate the 
ability of these “secondary” characteristics or waveform proxies to discriminate between different anisotropic 
structures and to resolve the anisotropic properties within Earth’s upper mantle.

The splitting parameters for a single anisotropic layer are simply given by the fast axis and delay time of that 
layer. They can be obtained from the horizontal component waveforms  by multiplication with the inverse 
splitting matrix, , that best linearizes the resulting waveform  (see eq. 10). However, in cases of two or more 
anisotropic layers the linearization may lead to an incident waveform that is not aligned with the back-azimuth, 
as it would be required for XKS phases in a radially symmetric Earth (before entering the anisotropic domain). It 
is therefore convenient to first express the waveform in terms of radial-transverse coordinates and to obtain the 
splitting parameters from the inverse of  that best minimizes the transverse waveform component. Explicit 
expression for  are given in the appendix (A1).

In vertically varying media, the splitting parameters obtained by this procedure are only “apparent” as the 
contributing individual layer parameters cannot be resolved (in view of the relatively long periods of XKS phases). 
Approximated closed form solutions for 2-layer apparent splitting parameters (appendix A1) exhibit the well-known 

-periodicity as functions of back-azimuth (Silver and Savage, 1994). This periodicity also applies to general 
multi-layered anisotropic media [Rümpker and Silver, 1998].

The splitting intensity for XKS phases relates to the relative amplitude of the transverse component [Chevrot, 
2000]. It depends on the angle between the back azimuth and the fast axis and on the delay time 𝛿𝑡. Alternatively, 
the splitting intensity can be measured by projecting the transverse-component waveform on the time-derivative 
of the radial-component waveform [Monteiller and Chevrot, 2010]

	 ,� (20)

where 𝜏 denotes time and the integration limits are chosen to enclose the complete XKS phase. Note that 𝑆𝐼 is 
given in units of time, usually in seconds. For a single anisotropic layer, the splitting parameters can be determined 
from the azimuthal dependence of the splitting intensity. However, it is well known, that, in contrast to splitting 
parameters, the azimuthal variations of the splitting intensity are not indicative of vertical variations of anisotropy, 
e.g., due to two or more anisotropic layers [Kong et al., 2015].

For a single anisotropic layer, analytical expressions for the splitting intensity have been derived which are valid 
at relatively low frequencies [Chevrot, 2000; see also appendix A1].

	 � (21)

This expression can be generalized to two or more anisotropic layers by superposition of the splitting intensities 
for the individual layers. By using the approach of Rümpker et al. (2014) for the derivation of closed-form expressions 
of the Ps-phase moveout due to multiple anisotropic layers above the converting interface, we find here that the 
2-layer splitting intensity can be expressed as

	 � (22)

with “effective” layer parameters

	 ,

	 .�
(23)
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From eq. (22) it is obvious that the 2-layer splitting intensity is not indicative of layered anisotropy; furthermore, 
it is commutative, i.e., it is independent of the order of the layers. This contrasts with the apparent splitting 
parameters and with the corresponding waveforms, as we will see in the examples given below.

3. Results

3.1 Vertically varying anisotropic medium

3.1.1 Reference model

We consider a layered medium consisting of two anisotropic layers defined by four parameters. We choose 
𝜑1 = 80°, 𝛿𝑡1 = 0,5 s, for the lower layer and 𝜑2 = 10°, 𝛿𝑡2 = 0,8 s, for the upper layer (Figure 1b). Fast axes for this 
medium differ by 70° and delay times are relatively large such that both layers are expected to have a significant 
influence on the traversing shear wavefront and the resulting splitting. This is also shown by the corresponding 
transverse-component waveforms which exhibit characteristic variations as a function of back-azimuth, whereas 
the radial components are almost unchanged (Figure 2). For the modeling, we assume a near-sinusoidal incident 
waveform with a dominant period of 9 s (Figure S1), which is considered typical for XKS waves.

3.1.2 Apparent splitting parameters

Based on eqs. (A7, A8) we calculate apparent splitting parameters for the reference model at 36 equally distrib-
uted values of back-azimuth between 0° and 350°. The values represent rather ideal observables and exhibit the 
characteristic 90°-periodicity for layered anisotropic media. Discontinuities of apparent fast polarization occur 
near back-azimuths of 25°, 115° etc. and are accompanied by increasing apparent delay times. The corresponding 
transverse-component waveforms near these back-azimuths are characterized by vanishingly small amplitudes 
(see Figure 2).

To investigate the ambiguities of the apparent splitting parameters with respect to anisotropic model parameters, 
we calculate apparent splitting parameters for a complete range of different 2-layer models (also based on eqs. A7, 
A8). We assume  and  at intervals of 5° and 0.1 s, respectively. This results in 
518.400 different test models, for which the apparent splitting parameters are calculated. We compare the apparent 

a) b)

Figure 2. �(a) Radial and (b) transverse-component XKS waveforms as functions of back-azimuth after the shear wave has 
passed through the 2-layer anisotropic reference model (Fig. 1b). Waveforms in (b) are enlarged a factor 1.5 with 
respect to waveforms in (a).
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splitting parameters for these models with those obtained for the reference model described above by evaluating 
their squared and summed differences. We account for the different units of the 2 splitting parameters by multipli-
cation with appropriate weights (1/30°) and (1/0.5 s). It is found that the 20 best models provide a reasonable spread 
in model parameters while the corresponding observables are nearly indistinguishable (in view of error estimates for 
observation based on real data). This approach can be considered a “brute-force” inversion by forward modeling and 
data fitting. Results for the 20 best-fitting models are shown in Figure 3a. Whereas the apparent splitting parameters 
as functions of back-azimuth are remarkably similar, the corresponding models (Figure 3b) vary significantly in both 
fast axes and delay times. For the lower layer, possible delay times can differ by up to 0.9 s (between 0.5 s and 1.4) 
and fast axes by up to 40° (between 40° and 105°) from the corresponding parameters of the reference model. In the 
upper layer the possible variations for the fast axis are even larger with differences (w.r.t. the reference model) of up 
to 50°, and 1.2 s for the delay time (Figure 3b). Following the possible values of the fast axis in the lower layer from 
40° to 105°, we find that the corresponding fast axis in the upper layer varies from 140° over 180° to 20°. Thus, the 
inversion yields a wide range of possible solutions for the fast axes in the upper and lower layer with a systematic 
trade-off, whereas their difference can vary by up to 20° (between 65° and 85°).

a) b)

Figure 3. �(a) 20 best-fitting apparent splitting parameters as function of back-azimuth. The green circles mark the apparent 
splitting parameters of the reference model at intervals of 10°. (b) Corresponding models of 2-layer anisotropy. 
Lower and upper-layer parameters for one model are marked by the same (colored) symbol. Parameters of the 
reference model are denoted by the red (filled) and black circles. The fit deceases from red, orange/yellow to 
green and finally blue, while symbols (from circle, square, triangle to inverted triangle) are repeated. Note that 
the red circle is overprinted by a (light) blue triangle in the upper panel.

3.1.3 Splitting intensity

Based on the numerical approach (eq. 20), we further calculate splitting intensities for the 518.400 anisotropic 
models and again select the 20 models for which the results best fit the splitting intensities for the reference model. 
The resulting splitting intensities are indistinguishable and may be considered equivalent (Figure 4a), especially, in 
view of a real-data analysis. For comparison, we also show splitting intensities calculated using the new analytical 
expressions (eq. 23). The results are in good agreement, but it should be noted that individual delay times in the 
reference model are relatively small compared to the dominant period, which facilitates the approximation. It is 
interesting to note that the splitting intensities are not in any way indicative of depth variations of the anisotropic 
structure beneath the profile, in agreement with Kong et al. [2015].

While the splitting intensities are very similar, the corresponding models significantly disagree (Figure 4b), even 
more than the previous models derived from the comparison of the apparent splitting parameters (see Figure 3b). 
Possible models cover a wide range of fast axes in both the upper and lower layer while delay times range from 0.1 s 
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to up to 1.4 s. Also, in difference to the previous models, there is no obvious systematic tradeoff between fast axes 
and delay times. However, models with an upper-layer or lower-layer fast axis of 25° to 35° exhibit either small 
delay times or near-perpendicular fast axes in the other layer. These parameters can be explained by the effective 
one-layer parameters for the 2-layer splitting intensity as function of back-azimuth. For the reference model, the 
value for the “effective” fast axis, 𝜑1,2, is 29° and the corresponding “effective” delay time is 𝛿𝑡1,2 = 0.53 s (see eq. 23).

a) b)

Figure 4. �(a) 20 best-fitting splitting intensities as function of back-azimuth. The green circles mark the splitting intensi-
ties of the reference model at intervals of 10°. The pink crosses indicate splitting intensities obtained from the 
closed-form (approximate) expressions for the effective anisotropic 1-layer parameters given by eq. (23) with 
𝜑1,2 = 29° and 𝛿𝑡1,2 = 0.53 s. (b) Corresponding models of 2-layer anisotropy. Lower and upper-layer parameters 
for one model are marked by the same (colored) symbol. Parameters of the reference model are denoted by the 
red (filled) and black circles.

3.1.4 Waveforms

Full (“finite frequency”) waveforms are thought to provide the most complete information about layered 
anisotropy. We use the transverse-component waveforms to obtain the 20 best-fitting anisotropic models (of 
518.400 tested) since, for relatively long periods ( ), the radial components remain almost unaffected by the 
anisotropic layers. Figure 5 shows that the transverse-component waveforms for the 20 different models are almost 
identical and agree well with those of the reference model. The corresponding fast axes and delay times are quite 
similar to those obtained by fitting of the apparent splitting parameters (see Figure 3b). Fast axes in the lower layer 
range from 40° to 105° with delay times between 0.4 s and 1.2 s. Fast axes in the upper layer vary from 130° over 
175° to 20° with delay times between 0.4 s and 1.6 s.

It is instructive to compare the transverse-component waveforms for these models (Figure 5b) with those ob-
tained from the apparent splitting parameters (models shown in Figure 3b) and from splitting intensities (Figure 4b). 
We find that the latter are more variable and partially incompatible with those of the reference model (Figure 6). 
These are also different from the models obtained from the fit of apparent splitting parameters.

3.2 Laterally and vertically varying medium

3.2.1 Model setup

In addition to the previous setup, we now include lateral variations of anisotropy by adding a second layered 
structure to the reference model (Figure 7). The new model consists of 4 anisotropic domains, where the anisotropic 
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parameters on the left-hand side are identical to those of the reference model. On the right-hand side we choose 
parameters for which we expect that the splitting is nearly identical. From the previous comparison of best-fitting 
waveforms and splitting parameters we select a model with 𝜑1 = 50°, 𝛿𝑡1 = 0.7 s, for the lower layer and 𝜑2 = – 15°, (or 
equivalently 165°), 𝛿𝑡2 = 0.5 s, for the upper layer. We choose this model to show that different anisotropic structures 
can lead to remarkably similar waveform and splitting effects, even if significant lateral and vertical variations occur. 
Conversely, this would suggest that the inversion of the waveforms or splitting parameters is ambiguous with respect 
to both lateral and vertical changes of anisotropic parameters in the mantle.

For the waveform calculations we revert to eq. (13) which also requires to explicitly set up elastic constants 
which are consistent with the anisotropic parameters in the four domains. In this case, we chose elastic constants 
for transverse isotropic (TI) media (appendix A2) which allows for a straightforward scaling between delay times 
and the corresponding percentage of anisotropy. The anisotropic domains are 100 km thick each and extend 

a) b)

Figure 5. �(a) 20 best-fitting transverse-component waveforms as function of back-azimuth. The green circles correspond 
to values for the waveforms of the reference model. (b) Corresponding models of 2-layer anisotropy. Lower and 
upper-layer parameters for one model are marked by the same (colored) symbol. Parameters of the reference 
model are denoted by the red (filled) and black circles.

a) b)

Figure 6. �Transverse-component waveforms as function of back-azimuth for 20 best-fitting models obtained from the 
comparison of (a) apparent splitting parameters and (b) splitting intensities. The green circles correspond to 
values for the waveforms of the reference model.
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from 35 km down to 235 km depth. Laterally, the blocks extend over the complete computational domain. They 
are embedded between an isotropic crust above and an isotropic mantle below. To generate the waveforms, we 
define a plane horizontal XKS wavefront entering the region from below and the pulse shape of the incident wave 
is given by a near-sinusoidal function. In view of the anisotropic parameters and to account for splitting in all 
domains, we set the initial polarization to 90° (parallel to the 𝑥1 axis). The orientation of the station profile also 
follows this axis. The lateral boundary between the two anisotropic domains occurs at the (arbitrarily chosen) 
range of 950 km.

Figure 7. �Laterally and vertically varying anisotropic reference model characterized by 4 distinct anisotropic domains in 
the depth range between 35 km and 235 km. In the numerical model,  corresponds to 𝑥1 and  to 𝑥2.

3.2.2 Wavefronts and waveforms

In Figure 8 we show snapshots of the 𝒖1 and 𝒖2 displacement fields at three different times ( ) in the 
laterally varying model. The incoming wavefront is initially polarized along 𝑥1, which corresponds to a back-azimuth 
of 90°. In this specific case, the two components can be interpreted as radial and transverse components also. 
On entering the anisotropic domains, part of the energy is transferred from 𝑢1 to 𝑢2. The wavefront is differently 
affected by the lateral changes in anisotropy. However, after the wavefront has passed through the entire mantle, 
the wavefronts show little lateral variations, except for some minor diffraction effects induced by the lateral 
changes in anisotropy. Also visible, near the bottom of the cross-section, are faint reflections from the horizontal 
boundary between the two layers. The corresponding radial and transverse waveform components (Figure 9) are 
nearly identical for all stations along the profile. This is to be expected and is consistent with the findings from the 
vertically varying models presented in the previous section.

We further investigate the influence of the initial polarization on the waveform similarity. Radial and transverse 
component XKS waveforms for 18 evenly distributed back-azimuths between 0° and 170° and recorded at distance 
ranges between 660 km and 1240 km (at intervals of 20 km) are shown in Figure 10. The radial component waveforms 
at the different positions are almost indistinguishable and the transverse components exhibit only minor variations, 
which is due to diffraction effects near the center of the profile. In comparison to the vertically varying modeling, 
the transverse waveforms are slightly more elongated and dispersed. This is inherent to the more complete finite-
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Figure 8. �Snapshots of the 𝑢1 (a) and 𝑢2 (b) displacement components at three times (𝑡1 < 𝑡2 < 𝑡3) in the laterally varying 
model. The incoming wavefront is initially polarized along 𝑥1 only, corresponding to a back-azimuth of 90°. 
When passing through the anisotropic domains, part of the energy is transferred from 𝑢1 to 𝑢2. In this specific 
case, the two components correspond to the radial and the transverse components. Range (horizontal axis) and 
depth (vertical axis) are given in km. Lateral and horizonal lines denote boundaries between anisotropic domains 
in the mantle (see Figure 7).

a) b)

Figure 9. �The (a) radial and (b) transverse-component XKS waveforms recorded at the receivers on the surface of the 
laterally varying model. The back-azimuth is 90° as in Fig. 8. An amplification factor of 3 is applied to the trans-
verse components relative to the radial components. Note that the vertical boundary between the anisotropic 
domains occurs at range 950 km along the station profile.
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difference modeling approach, which also accounts for reflections and scattering from the internal boundaries and 
inhomogeneities.

3.2.3 Splitting parameters

Directly from the waveforms we also determine (numerically calculated) splitting parameters based on mini-
mizing the transverse component energy [e.g., Link et al., 2022]. The results shown in Figure 11 agree well with 
those for the 2-layer reference model (see Figure 3a) which have been obtained from analytical expressions for the 
apparent splitting parameters (eq. A7-8). Waveform diffraction, as visible in Fig. 9b, plays a role and affects some of 
the splitting parameters obtained from waveforms at the transition between the anisotropic domains. However, the 
results confirm that the splitting along the profile is almost uniform, especially in view of real-data observations 
where noise and other sources of uncertainty (e.g., sensor orientation) can have a considerable influence.

a) b)

Figure 10. �The (a) radial and (b) transverse-component XKS waveforms as functions of back-azimuth and for all stations 
along the profile (superimposed). An amplification factor of 3 is applied to the transverse components.

a) b)

Figure 11. �Apparent splitting parameters, (a) delay times and (b) fast polarizations, for all stations along the profile as 
functions of back-azimuth. The two parameters are obtained by minimizing the energy on the transverse wave-
forms components (Figure 10) under the assumption that the splitting is caused by a single anisotropic layer.
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3.2.4 Splitting intensity

The previous findings are further supported by splitting intensities as function of back-azimuth which we 
obtain by repeating the finite-difference waveform calculations for 37 values of initial polarization from 0° and 
360° (Figure 12). The splitting intensities at different receiver positions show minor variation even for stations 
located close to the center of the profile, where the diffraction effects are also more pronounced. Therefore, 
the superimposed curves from the separate locations can be approximated well by the single curve based on 
effective layer parameters, 𝛿𝑡 = – 0.54 s and 𝛿𝑡 = 27.3°, obtained from the analytical expression (eqs. 22, 23) using 
the parameters on the right-hand side of the model shown in Figure 7. Again, in view of real data, the variations 
along the profile as observed in this numerical example, are probably not significant.

Figure 12. �Splitting intensities as functions of back-azimuth for all stations along the profile (lower panel). Super-
imposed splitting intensities for all stations (upper panel). Circles denote analytical results according to 

, (eq. 22), with effective 1-layer parameters obtained from eq. (23).

4. Discussion

The results presented above show that it is not possible to fully resolve the vertical and lateral variations of 
anisotropic parameters in the mantle from shear-wave splitting observations of teleseismic phases. This is certainly 
true if splitting intensities are used to quantify the splitting, but it also holds for apparent splitting parameters and 
even full waveforms. However, the latter two observables exhibit systematic variations between parameters of the 
upper and lower layers that can be exploited to better constrain the anisotropic properties. It is clear from Figs. 3 
and 5 that by fixing the fast axis in one of the layers (based on, e.g., constraints from absolute plate motion) the 
three remaining parameters can be obtained without further ambiguity.

Abrupt lateral and vertical changes, as studied here, may not occur in nature. On the other hand, the effective 
Fresnel zones of XKS waves are relatively large such that effects of sharp (lateral) contrasts on the waveforms are 
smoothed out in any case. Another aspect is the purely vertical incidence of the XKS wavefronts considered in 
our modeling. In reality, the angles of incidence are close to about 15° and this could potentially help in resolving 
heterogenous anisotropic structure [Huang and Chevrot, 2021; Löberich and Bokelmann, 2022]. Tilted-axis 
anisotropy can have a significant influence on the waveforms [e.g., Šílený and Plomerová, 1996]. In our examples, 
however, we deliberately chose a relatively simple type of the anisotropy which can be described by only two 
parameters. Additional unknowns, such as tilted axes, would further complicate the inversion and probably lead to 
an even wider range of possible models.

The question may arise if higher-frequency waveforms could be used to better discriminate between the vertically 
and laterally varying models. We tested this by calculating transverse waveforms, characterized by dominant periods 
of 4 s, for the 20 best-fitting models obtained from the fitting of longer-period waveforms (see Figure 5). The results 
(Figure S2) show that differences become apparent but may not be significant enough for a reliable discrimination 
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(also considering the longer period nature of XKS phases). However, higher frequency SKS waveforms have been 
used previously to discriminate between complex models of anisotropy [Menke and Levin, 2003; Rümpker et al., 
2003] and we will further explore their potential in future studies.

In view of the results for laterally and vertically varying model we may consider different inversion strategies. 
We exclude splitting intensities since they do not provide any insight into depth variations and may lead to models 
not compatible with the observed waveforms. If we observed splitting intensities such as those given in Figure 12, 
we could only assume a uniform layer without any variations of anisotropy. The inversion in terms of this model 
leads to a fast axis of 27° and a delay time of about 0.6 s, values that correspond to the effective layer parameters 
given in eq. (23), but without any overlap with the real 8 anisotropic parameters of the model (see Figure S3). Our 
findings regarding the limitations of splitting intensity to infer complex anisotropy are in agreement with a study 
by Kong et al. [2015] where differences between splitting parameters and splitting intensity are analyzed in detail.

Measurements of apparent splitting parameters (Figure 11) can provide clear evidence for depth variations of 
anisotropy. However, in our case, the lateral variations are not obvious. From the observation one would, therefore, 
assume a model with vertical variations only and perform the inversion accordingly. To simulate this situation, we 
perform inversion for the averaged curves of the apparent splitting parameters obtained by stacking the splitting 
parameters for all stations along the profile. Anisotropic model parameters obtained from the 20 best fitting curves 
(based on analytical expressions) are given in Figure S4. Not surprisingly, the parameters for the individual models 
are comparable to those already shown in Figure 3.

In a combined inversion approach, azimuthal variations of apparent splitting parameters can provide first 
evidence for depth variations of anisotropy such that the following waveform inversion focuses on obtaining model 
parameters of (at least) 2 anisotropic layers. However, one may wonder about the possibility to directly discriminate 
between single and two-layer anisotropy using waveforms only. To investigate this, we first apply an inversion of 
the split waveforms that accounts for a single anisotropic layer. This is done by rotating the recorded waveforms 
into a trial fast-slow coordinate system and by subsequent time shifting of ± 𝛿𝑡/2 with the objective to minimize 
the transverse component energy.

Results of applying the approach to the waveforms in Figure 10 are shown in Figure 13. As before, we ignore the 
vanishingly small lateral variations and use azimuthally varying waveforms as input for the inversion obtained from 
averaging over all receiver locations. We note that the minimization is certainly not sufficient. The corresponding 
single-layer models are all grouped near a fast axis of 25° and delay time of 0.6 s. Interestingly, the results are similar 
to those obtained from the inversion of the splitting intensities (Figure S3). However, in the case of using waveforms, 
the remaining significant transverse energy provides clear evidence for the influence of anisotropic layering. This 
essential information is lost when using splitting intensity as an observable.

a) b)

Figure 13. �(a) Transverse-component waveforms for the 20 best models obtained after application of 1-layer splitting to 
minimize the energy of the transverse waveforms. (b) The corresponding 20 best 1-layer model parameters 
(colored symbols). Large open circles and squares correspond to parameters of the four anisotropic domains 
(see Fig. 7).
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 In a more general approach, we apply a 2-layer splitting inversion to the waveforms (by applying a second 
rotation and time shift). In turn, this leads to a significant reduction of the transverse amplitudes for the 20 models 
that best minimize the energy (Figure 14). The model parameters are again similar to those obtained from the 
inversion of apparent splitting parameters, but 2 of the models fully agree with the input models used in the finite-
difference modeling. This is certainly due to using the complete waveforms as observables.

One may also be tempted to use the radial-component waveform as a proxy for the unsplit incoming waveform 
and to minimize the differences between calculated and observed transverse waveforms in the inversion. We 
found, however, that the energy minimization is more stable as it is applicable even if the radial components are 
significantly modified due to the splitting.

a) b)

Figure 14. �(a) Transverse-component waveforms for the 20 best models obtained after application of 2-layer splitting to 
minimize the energy of the transverse waveforms. (b) The corresponding 20 best 2-layer model parameters 
(identical colored symbols belong to the same vertically varying model). Large open circles and squares corre-
spond to parameters of the four anisotropic domains (see Fig. 7).

5. Conclusions

We have applied different approaches of waveform modeling to investigate effects of heterogeneous anisotropic 
structures on shear wave splitting and to assess the resolving power of different observables such as waveforms, 
apparent splitting parameters, and splitting intensities. For 2-layer anisotropic media we confirm earlier infer-
ences which have shown that azimuthal variations of the (two) apparent splitting parameters are ambiguous and 
do not allow to uniquely identify the four anisotropic parameters of the underlying structure. Relevant examples 
for the limitations of inversions based on splitting parameters are also discussed in a recent study by Lamarque 
and Agostinetti [2020]. Ambiguities are even more significant when the splitting intensity is used to quantify the 
azimuthal waveform variations. While the (single parameter) splitting intensity may seem a convenient measure 
for characterizing the waveform splitting, it also holds significant drawbacks: First, even from measurements over a 
wide range of back-azimuth, there is no characteristic signature that would indicate depth variations of anisotropy 
[see Kong et al., 2015]. Secondly, identical azimuthal variations of splitting intensity for different anisotropic struc-
tures do not imply that the corresponding split waveforms are also similar. This can have profound consequences 
for any inversion scheme that is based on fitting of observed and calculated splitting intensities, as it could lead to 
anisotropic models that are not compatible with the observed waveforms.

However, as our modeling shows, even by employing the complete (“full”) XKS waveforms in the inversion we 
cannot remedy the general problem of non-uniqueness. Waveforms for significantly different anisotropic models, 
often, are indistinguishable. This remains true even under ideal (and noise-free) conditions with waveforms from 
the complete range of back-azimuths. The problem is partly related to the band-limited nature of XKS waveforms 
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with relatively long dominant periods that mask the distinct shear-wave arrivals from layered structures. Therefore, 
higher-frequency waveform information should be included in the analysis whenever possible. Our results also show 
that inversions of both waveforms and apparent splitting parameters lead to similar models that exhibit systematic 
variations of anisotropic parameters. These characteristics can be exploited to better constrain the anisotropic 
structures.

We conclude that complete waveforms or splitting parameters are more appropriate observables for XKS-
splitting inversions and related tomographic schemes. In view of our results, the use of splitting intensities seems 
questionable due to their insensitivity to vertically varying anisotropic structures. However, (band-limited) XKS-
splitting inversions, alone, are not sufficient to resolve general heterogeneous anisotropic structures of the upper 
mantle and, therefore, combinations of methods based on, e.g., receiver-function splitting [e.g., Park and Levin, 
2016; Link et al., 2020]; P-wave travel-time deviations (e.g., Babuška and Plomerová, 2020),  or surface waves 
[e.g., Endrun et al., 2011] are required. Additionally, geodynamic constraints on mantle flow [e.g., Conrad et al., 
2007] can also provide essential information to better resolve the anisotropic structures.

Acknowledgements. We are very grateful to Jeffrey Park and an anonymous reviewer for helpful suggestions and 
constructive criticism on an earlier version of the manuscript.
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